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ON WAVEWISE ENTROPY INEQUALITIES FOR 
HIGH-RESOLUTION SCHEMES. I: THE SEMIDISCRETE CASE 

HUANAN YANG 

ABSTRACT. We develop a new approach, the method of wavewise entropy in- 
equalities for the numerical analysis of hyperbolic conservation laws. The 
method is based on a new extremum tracking theory and Vol'pert's theory 
of BV solutions. The method yields a sharp convergence criterion which is 
used to prove the convergence of generalized MUSCL schemes and a class of 
schemes using flux limiters previously discussed in 1984 by Sweby. 

1. INTRODUCTION 

In this paper, a new version of [29], we consider the entropy consistency of TVD 
and TVB high-resolution schemes for Cauchy problems of scalar conservation laws 
of the one space variable: 

f t w-f (w)' =0, 
(1 . 1) {w(,O) = wo(X). 

We assume that f E C2, and that wo E BV. 
Let us partition the real line for the space variable into cells of equal size. The 

jth cell is centered at xi = jh+c, where j = 0, +1, +2,..., c is a constant, and h is 
the space stepsize. For an arbitrary function vj defined on the set of the grid points 
of the mesh, we use A+ and &_ to denote the forward and the backward difference 
operators, respectively: A?vj = 4(vj?1 -vj). The corresponding divided difference 
operators are denoted by D? = h?. Let uj (t) be the numerical approximation 
to the exact solution w(xj,t) or its cell average on the jth cell v4(xj,t), t < ox. A 
semidiscrete conservative scheme has the form 

(1.2) d+uj(t) =-D+gj , 

where 

(1.3) gj+2 = g(Uj>p+1,Uj-p+2,. .., uj, ..., uj+p, h). 

Here, g is Lipschitz continuous with respect to its first 2p arguments and is consis- 
tent with the conservation law in the sense that 

(1.4) g(u, u ..., u, h)-f (u). 
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The collection of points {xjf,P, Xj.J+i,.. . ,Ix3j+P} is said to be the stencil of the 
scheme at the point (xj, t), and the integer p the size of the stencil of the scheme. 
The scheme is said to be self-similar if g is independent of h. 

We often extend the domain of a numerical solution {uj(t) j- ?0, 1, t2,...} 
to the entire upper half plane R x R+ by setting U(x, t) = Uj(t) for Xj1/2 < x < 

Xj+1/2. 
Difficulties in regard to two important issues, nonlinear stability and entropy 

conditions, have hampered the advance in the analysis of high-order schemes. One 
can ease these difficulties with some stepsize-dependent limiters. For example, the 
works of Coquel and LeFloch [51, Johnson, Szepessy and Hansbo [12], Cockburn, 
Coquel and LeFloch [3], Cockburn and Gremaud [4], and Chen and Liu [2] all use 
stepsize-dependent limiters. These results are usually more general (multispace 
dimensions, nonconvex fluxes, systems, etc.). However, since these limiters smear 
discontinuities, especially the contact discontinuities (see [27] and [28]), one rarely 
uses them in computations. 

Throughout this work, we only consider TVB self-similar schemes, and we abide 
by the following concept of convergence: A TVB scheme (1.2)-(1.4) for the Cauchy 
problem (1.1) converges if for each initial function wo in BV, and for each sequence 
?f initial data {uk(0), = 0, ?1, ?2,~ ... 0 such that they are uniformly in BV and 
converge in L' (R) to wo, and such that the stepsizes hk -O 0 as k -* oc, then the 
corresponding sequence of numerical solutions {u k(t), j =0,+1, ?2,... l of the 
scheme converges in Ll c(R x R.+) to the unique entropy solution w of the problem 
(1.1). By the Lax-Wendroff Theorem, entropy consistency implies convergence. 

The dominant approach in the analysis of entropy consistency has been the 
method of cell entropy inequalities (CEI). In the works [10, 14, 6, 17, 21], CEI was 
successfully used to prove the convergence of large classes of first-order schemes 
such as monotone schemes and E-schemes. Through the pioneering work [18] of 
Osher, in the last decade, CEI was further developed and applied to prove the 
convergence of a variety of high-resolution schemes for convex conservation laws. 
See also [19, 20, 16] and the references therein. 

The advantages of CEI are that the method mimics the elegant proof of the Lax- 
Wendroff Theorem, and that the method can be extended, at least in principle, to 
multi-dimensional cases and systems. 

A disadvantage is that the method demands too much. For example, in the 
nonconvex case, the current uniqueness theory (see Vol'pert [26] and Kruzkov [13]) 
requires the entropy inequalities for an entire class of entropy functions. The cor- 
responding cell entropy inequalities exclude all but E-schemes which are only first- 
order accurate (see [17] and [20]). Even in the convex case, this may necessitate 
unnatural restrictions (see [18]). 

The recent interesting works of Bouchut, Bourdarias and Perthame [1], and 
Jiang and Shu [23] show that some self-similar schemes other than those in the 
form of (1.2)-(1.4) are more accommodating of cell entropy inequalities. However, 
the current paper will stick to the self-similar schemes in the form of (1.2)-(1.4), 
which contain most classical high-resolution schemes. 

In this paper, we propose a new approach, the wavewise entropy inequalities 
(WEI), for a large class of TVD schemes. Roughly speaking, the WEI convergence 
criteria state that a scheme converges if it does not produce expansion shocks. As 
applications of the new approach, we solve two open problems concerning high- 
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resolution schemes: We prove the convergence of generalized MUSCL schemes and 
the high-resolution schemes using Osher-Chakravarthy flux limiters. 

In addition to providing sharp convergence criteria, the WEI rigorously describes 
and justifies a widely observed phenomenon: If a nonlinearly stable (say TVD) 
conservative scheme fails to converge, it produces expansion shocks. Moreover, 
the WEI provides a theoretical foundation for the extremely important practice of 
using Riemann (shock tube) problems as test problems for the numerical analysis 
of conservation laws. 

The drawbacks of the WEI method are: 1. The method relies on TVD assump- 
tions which rule out the possibility of applying its current version to some interest- 
ing self-similar uniformly high-order schemes. 2. Applications of the WEI method 
to high-resolution schemes for multi-dimensional conservation laws are even more 
remote. In this respect, according to the well-known Goodman-LeVeque Barrier 
Theorem (see [9]), two-dimensional TVD schemes are at most first-order accurate. 
To the author's knowledge, no self-similar scheme of higher than first-order accuracy 
has been proven to be TVB. 

The paper is organized as follows. In ?2 we review some properties of the dis- 
continuities of BV weak solutions of conservation laws. In ?3 we give four WEI 
convergence criteria and prove the first two and the last one of them. In ?4 we 
present the applications. The proof of the third WEI criterion can be found in the 
Supplement to the paper, which contains the sections ?6 to ?8 and an appendix. 

We point out here that when the first version of the IMA preprint [29] was com- 
pleted by the end of 1989, Professor P. L. Lions kindly informed the author that 
in an independent work [private communication], with different techniques, he and 
P. E. Souganidis proved some convergence results for MUSCL schemes in the frame- 
work of Hamilton-Jacobi equations. It is understood that in one space dimension, 
entropy solutions of a hyperbolic conservation law correspond to viscosity solutions 
of the Hamilton-Jacobi equation with the same flux function. From their note [15], 
it is clear that, besides totally different techniques, the results of the two works 
for MUSCL schemes are also different: Our result is valid for any convex flux, for 
E-scheme building blocks, and for time-dependent problems; while the results in 
[15] are valid for strictly convex fluxes. for monotone-scheme building blocks, and 
for steady-state problems. 

2. REVIEW OF DISCONTINUITIES OF WEAK SOLUTIONS 

Unlike the method of CEI, the WEI method is a discrete version of the following 
simple observation concerning a weak solution w. Let U(w) be an arbitrary convex 
entropy function, and let F(w) be its entropy flux: F'(w) = U'(w)f'(w). If w is 
smooth in an area Q, then Ut + FX = 0 holds there. Hence there is no need to 
worry about the entropy conditions at the area of smoothness of w as long as it 
is a solution. In other words, the entropy consistency of a weak solution is solely 
determined by the entropy conditions of its discontinuities. In order to find the 
discrete version of this observation, we devote this section to a brief review of some 
of the key properties of these discontinuities. The main source for our review comes 
from Vol'pert's celebrated BV solution theory [26]. 

For completeness, we consider conservation laws wt +f (w). = 0 in several spatial 
dimensions. Hence, we assume that x E Rn, f is a vector of n components: f = 
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(fl, f2, ... , fn)T, and f(w)x = E x-fi(w). We use (aeb) to denote the dot product 
of two vectors a and b. Let w_ and w+ be any two distinct numbers in the domain 
of f. If a is a unit vector that satisfies 

(2.1) (w+ - w)at + ((f(w+) - f(w)) * ax) = 0, 

where at and ax are the t-component and x-component of a, respectively, then the 
function 

(2.2) W(wXt) 
w_ if ((x,t) a) > O, 

is a traveling discontinuity which is a weak solution of the conservation law, and a 
is normal to the discontinuity. Define 

(2.3) F(u, v) = [f (u) - f(v)]sgn(u - v). 

If W(x, t) satisfies 

(2.4) w+- clat + (F(w+, c) * ax) < lw_- cat + (F(w_, c) * ax) 

for all real constants c, then W is an admissible traveling discontinuity. Otherwise it 
is a traveling expansion shock. Let f [w; w_, w+] be the linear function interpolating 
(f (w) * ax) at w = w- and w = w+. It is easy to see that the condition (2.4) for 
all c is equivalent to the following inequality: 

(2.5) sign(w+ -w)(f [w; w, w+] - (f (w) * ax)) < 0 

for all w between w_ and w+. In the case of one spatial dimension, (2.2), (2.1) and 
(2.5) are reduced to 

(2.6) W(x,t) if x < st, 

(2.7) s(w+ - w_) = f(w+) - f(w_), 

and 

(2.8) sign(w+ - ) (f [w; w_, w+] - f (w)) < 0 

respectively. In the last inequality, we have scaled a so that ax = 1. 
To see the properties of discontinuities of BV weak solutions of conservation 

laws, let us review some aspects of the BV solution theory of Vol'pert [26]. For 
any set E C R', p1(E) is its Lebesgue measure. With Br(xo) we denote the ball 
centered at xo with the radius r. Let a be a unit vector in Rn, and Ra(xo) be the 
half space ((x - xo) * a) > 0 in Rn. A point of density (resp. rarefaction) for the 
set E is a point x for which 

lim , (E n Br (x)) //I (Br (x)) = 1 (resp. 0). 

If w(x) is a function defined on a set E C Rn and xo is not a point of rarefaction 
for E, then LEW(XO) will denote the approximate limit of the function w(x) at the 
point xo with respect to the set E: Ve > 0, xo is a point of rarefaction of the set 

{x: Iw(x) - LEW(XO) I > , x E E}. 
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Definition 2.1. Let w(x) be a function defined on R'. 
(a) A point xo E Rn is said to be regular if there exists a unit vector a such that 

laW(XO) and l-aw(xo) exist and are finite. Here, laW(xo) = LRa(xo)W(XO) 

(,B) The point xo is said to be a point of jump for w(x) if it is regular and 
laW(XO) & l-aW(XO). The set of the jump points for w(x) is denoted by r(w). 

(-y) If xo c r(w), then the value a appearing in the definition (a) is called the 
normal to r(w) at the point xo. We let a = (at, ax) where at is the time component 
of a, and ax the space component. 

We now apply the preceding concepts for the BV functions of n + 1 variables to a 
BV weak solution w(x, t) of the conservation law. For any (xo, to) E r(w), let a be 
the normal to r(w) at the point (xo,to). Let w+ = law(xo,to), w_ = l_aw(xo,to). 
We then call W, defined by (2.2), the traveling discontinuity associated with w at 
the jump point (xo, to) 

Denote by Hn the n-dimensional Hausdorff measure. The following basic result 
holds: 

Lemma 2.2 (Vol'pert [26]). A necessary and sufficient condition for a weak solu- 
tion w E BV of Wt + f(w)x = 0 to be an entropy solution is that (2.4) holds for 
Hn-almost all points in r(w). 

Throughout this paper similarity transforms and the self-similar property of the 
schemes play important roles. Let S,0 to be the similarity transform centered at a 
point (xo,to): 

Sx ,to ((x, t)) = (xo + Ex, to + Et). 

This induces a transform TxO,to in the set of the functions b defined on a domain 
Q C Rn x R: 

TX60,tol = 10 o Sx60,to I 

if SxO,toQ C Q, where q I denotes the restriction of q to the set Q. 
Define w,(x,t) by 

w (x, t) = (TX0,tow) (x, t) 
= w o SX0,to ((x, t)) 
= w(xo +Ex,to +Et). 

We make the following preliminary observation, which turns out to be one of the 
foundations of the WEI method. 

Lemma 2.3. Let (xo, to) be a jump point of a BV weak solution w in the sense of 
Definition 2.1. If f{k} I is a sequence of positive numbers such that limk, " ok= 
0, then the sequence {Wek } converges in Ll to the traveling discontinuity W asso- 
ciated with the jump point (Xo to) 

Proof. Fix any positive number R; by the definition of the jump points, for any 
6 > 0, there exists a number E(6) such that if r < E(6)R, 

,u{(,t)w(x,t) - W > } n Br(X2 to)) 6 

/(Br (xo , to)) < 4MVR' 
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where V, = b(By(O, 0)) for any -y > 0. Therefore, for all k with Ek < E(6) and 
rk =kR, 

' WB k (X, t) - W(x, t) I dxdt 
BR 

(/~~ W(,t W (x- xO t -to) dxd ) (BR (0, 0)) 

'\Jrk (xo,to) 9k ,a )(Brk (XO,Ito)) 

<2VkVR 6 6 VR 
Vrk 4MVR 2VR Vrk 

-6. 

This proves the lemma. D 

3. WEI CRITERIA FOR CONVERGENCE 

In this section, we present, in order of ascending practicability but descend- 
ing generality, four WEI criteria for convergence of semidiscrete TVB and TVD 
schemes. The first one is based on Lemma 2.3, and each successive one is based 
on the preceding one. The relatively easy proofs of the first two and the last are 
contained in this section. The proof of the third is contained in the Supplement at 
the end of this issue. 

The first criterion, valid for conservation laws Wt + f (w)x = 0 in several spatial 
dimensions, is as follows. 

Theorem 3.1. (A necessary and sufficient condition for convergence of TVB 
schemes) A TVB scheme (1.2)-(1.4) for the Cauchy problem (1.1) converges if and 
only if there exists no sequence of numerical solutions of the scheme that converge 
in L' ,(R x R+) to a traveling expansion shock. 

Proof. The "only if" part is trivial. For the "if" part, we argue by contradiction. 
Assume that a TVB self-similar scheme (1.2)-(1.4) does not converge for some 
given BV initial condition. The Lax-Wendroff Theorem implies that there is a 
subsequence {uv}?>?? that converges in LlC(R' x R+) to a weak solution w of 
(1.1) that is not the entropy solution. Suppose that the space step of uv is h>, and 
that lim,,, h. = 0. Lemma 2.2 implies that there is a jump point (xo, to) of w 
that violates the entropy condition (2.4). Let W be the expansion shock associated 
with w at (xo, to). Let {fRk} I 1 be an increasing sequence of positive numbers such 
that lim,,ft R, = oc. First, by Lemma 2.3, for any k, one can choose a sufficiently 
small positive number Ek so that 

I/ Wk (XI t) -W(x, t) I dxdt< 1 
]Rk w(xt W(t)x 2k+i1 

Next, since the scheme is self-similar, for all ? > 0, {Tx0oto uk}l, is also a sequence 
of numerical solutions of the same scheme, and it converges to wE in LlC(Rn x R+) 
as k -> oc. Hence, one can choose Vk so that both 

I/ lT2tou k(x, t) wEk(x,t)l < 
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and Ek < 1 hold for each k. These two inequalities imply that 

IB/k ITxtkUk(x,t) - W(x, t) < 
BRk 

Now clearly, {Tok tuvk} 0 converges to W in L'C(Rn x R+). D 

For TVD self-similar schemes of one spatial dimension, we may enhance our 
result by using the property that the total spatial variation of u(xo + Ex, to + E) 
is the same as that of u(x, to + c) for any function u with bounded total spatial 
variation. In the following, we suppose TVu(t) is the total spatial variation of u at 

def 
the time t, DTVu(t1,t2) = TVu(t1) - TVu(t2) is the decay of TVu(t) from ti to 
t2, {Ek} =l is a sequence of positive numbers such that limk, Ek = 0, w_ and 
w+ are two distinct real constants in the domain of f, and W(x, t) is a traveling 
discontinuity defined by (2.2) with the two states w_ and w+. For any constant 
B > 0, we define Ptv ,W+,B to be the set of the sequences of numerical solutions 

{uk}l??1 generated by a TVD self-similar scheme, such that the following conditions 
hold: 

(i) Uk(X,t) -> W(x,t) in L C(R x R+) as k -> o, 
(ii) ITVUk (t) < B for all t and k, and 

(iii) DTVUk (0, 1) < Ek for each k. 

We call W(x, t) the limit of 'wI,w+,BI and w_, w+ the two states of PFw-,w+,B. 

Here is our second criterion for convergence. 

Theorem 3.2. (A necessary and sufficient condition for convergence of TVD 
schemes) A TVD self-similar scheme given by (1.2)-(1.4) for conservation laws of 
one spatial variable converges if and only if for all tr'iples of number's {w, w+, B} 
with B > 0, the set P! ,w+,B= 0 when its limit W(x, t) is a traveling expansion 
shock. 

Proof. Again, the "only if" part is trivial. It suffices to prove the contrapositive of 
the "if" part. Assume the convergence of a TVD self-similar scheme given by (1.2)- 
(1.4) fails. It follows from Theorem 3.1 that there exists a sequence of numerical 
solutions {uv } of the scheme that converges in L' c(R x R+) to a traveling expansion 
shock W of the form (2.6). Moreover, the total spatial variations of the numerical 
solutions are bounded by a positive number B. Since the scheme is TVD, for any 
positive integers n and v, there is an integer m(n, v) such that 0 < m(n, v) < n - 1 
and 

DTVu, (m(n, v)/n, (m(n, v) + 1)/n) < -DTVu, (0, 1) < B/n. 
n 

Let tn,. = m(n, v)/n, and Xn, = Stn, . For each k, one can first choose a sufficiently 
large n nk so that B/nk < ?k. Then, since uv W in Ll c(R x R+), one can 
choose a sufficiently large v = Vk so that 

I 8t+l j j |U k (x, t) -W(x, t)| dxdt < Ek/nk 
0 t-1 

For simplicity we set Xk Xnk,vk tk = tnk,vkI and fu (x,t) = T /nk 
Uk(X,t). We 

Xk,tk 

then have 
/nk St+nk 

1y itrI klk (x t) - W(x, t)| dxdt < ?k 

0 t-nk' 
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since Tc,, ,W(x, t) - W(x, t) for any positive constants a and c. Moreover, TVfk (t) 
< B and DTVak (0, 1) = DTV,M (m(n, v)/n, (m(n, v) + 1)/n) < ?k hold since the 
total spatial variation of u(xo + Ex, to + c) is the same as that of u(x, to + c) for any 
function u with bounded total spatial variation. Therefore, {I k}k1 E Pw-,w+,B 
The lemma is proved. F: 

Remark. It is not clear whether the same result holds for n spatial dimensions 
because Txo,to increases the spatial variation by a factor - 

Our next two criteria demand the following TVD condition of Tadmor [25]. 

Assumption 3.3. The numerical fluxes gj+ 1 (t), j = 0, ?1I, I?2, ..., satisfy 

gj+l(t) > f(u3) > gi_ i (t) if uj(t) - uj31(t) > 0, 

and 

gj+ I(t) < f(u3) < gj_.(t) if uj(t) -uj?1(t) < 0. 

Corollary 3.4. Let u be a scheme of the form (1.2)-(1.4) that satisfies Assumption 
3.3, and let c be a positive constant. 

(i) If 

(3.1) min(sign(A+uj(t))A-uj(t), IA+uj(t)l) < c 

holds for an integer j, then 

I gizt (t)- f (uj (t) I < I gj+ i (t) - gj_ (t)|I + CE. 

(ii) If 

(3.2) min(jA-uj(t)|, A\+uj(t) ) < c 

holds for an integer j, then 

lgji (t) -f (uj (t)) < Cc. 

Proof. First suppose (3.1) holds for some j. It is easy to see that by suitably 
adding c to or subtracting it from uj+1 (t) or uj-1 (t) when necessary, and denoting 
the modified u by ui and the correspondingly modified gj? 1 (t) by 'gj 1 (t), one can 
achieve A-i U(t) A+Uj (t) < 0. Then, by Assumption 3.3, 

(3.3) 19g- i (t) - f (uj (t) I < [g-i+ i (t) - g7j_ i (t) 1 

Since the numerical flux function g is Lipschitz continuous, Ig7j 1(t) -gj? 1 (t) I < Ce. 
Therefore, the conclusion of (i) follows from (3.3) and the triangle inequality. 

Next, one can prove (ii) similarly by using the fact that, because of (3.2), uj (t) 
becomes a local spatial minimum ( maximum ) if one adds ( subtracts) c to (from) 
both uj-1(t) and uj+1(t). 0 

We need to introduce the concepts of asymptotic traveling discontinuities and 
asymptotic traveling expansion shocks ( we use "asymptotic" instead of "discrete" 
to avoid a confusion with Jennings's discrete shocks [11]). For this purpose, we 
need the following notion of paths to be the boundaries of the transition areas of 
the discontinuities. 

Definition 3.5. A gridpoint-valued function XI(t) = I(t)h + c, 0 < t < 1, is said 
to be an c-path of the first type with respect to u if the following conditions hold: 



ON WAVEWISE ENTROPY INEQUALITIES 53 

(i) There is a finite partition of [0, 1]: 

0 = TO < Tl < < Tn=- 

such that I(t) is a constant integer on each subinterval ( -i, TO). 

(ii) For all j between I(rT-) and I(Tr+), uj(T,) = uI(T_)(Tv) = uI(,,+)(Tv). 
Moreover, uI(,,+)(Tr) is monotone with respect to v. 

(iii) The inequality min(sign(A+uI(t)(t))/A UI(t)(t), lA+uI(t)(t)D) < e holds. 
(iv) The total variation of the function UI(t) (t) of t for 0 < t < 1 is bounded by E. 

Definition 3.6. A gridpoint-valued function XI(t) - I(t)h + c is said to be an 
E-path of the second type with respect to u if the following conditions hold: 

(i) 1(t) is a monotone function of t on the interval [0, 1] with the property that 
there is a finite partition of [0, 11: 

0 = ro <T1 < <.T. =< 

such that I(t) is a constant integer on each subinterval (Tr- 1, T). Moreover, 
II(-rv+) - 1(fr-)l = I for v = 1, , n -1. 

(ii) There is a constant A such that for any t E [0, 1], juj (t) - Al < E holds if xj 
is in the stencil of the scheme at (XI(t)I t). 

We have the following lemma relating the numerical flux to the exact flux along 
an E-path of either type. 

Lemma 3.7. Suppose that {uj(t)} J?O is a numerical solution generated by a 
scheme (1.2)-(1.4) that satisfies Assumption 3.3. Let XI(t) = I(t)h + c to be an 
E-path of either type. We then have 

1 

(34) Jo gI(t)? (t) - f(ui (t)) I dt < CE, 

where C depends on the Lipschitz coefficients of g only. 

Proof. The conclusion for an E-path of the second type follows directly from the 
consistency relation (1.4), the Lipschitz condition of the numerical flux, and condi- 
tion (ii) in Definition 3.6. For an E-path of the first type, using (1.2) and conditions 
(i), (ii) and (iv) in Definition 3.5, we get 

(3.5) j gIg (t) - gi(t)_ y(t)ldt = h j d-u(t(t) dt < h. 
lgl(t)d 2 2 d~~uIt )t 

With condition (iii) in Definition 3.5, apply Corollary 3.4 and obtain 

9gI(t)? i (t) - f(uI(t)(t))| < KgI(t)+ (t) - gI(t)-2 (t)I| + CE. 

We complete the proof by integrating the last inequality from 0 to 1 and applying 
(3.5). a 

Let {uW(t),j = 0,+1,2 2,... }%= be a sequence of numerical solutions gener- 

ated by a semidiscrete schemes associated with a sequence of meshes {xy, j 
0, 
?l, 2 , . =1, where xk = jhk + Ck and hk -O Gas k -* oo. Let {8k} be a 

sequence of positive numbers such that 8k -O 0 as k --+ oo. 

Definition 3.8. A sequence of pairs of 8k-paths of either type, {x(k) (t), y(k) (t)}I1k= , 

where x(k) (t) Xkt) = k(t)hk+Ck, y(k) (t) kt) = Jk (t)hk+ck, andO < t < 1, 

is said to be an asymptotic traveling wave (ATW) of {uk} if x(k) (t) < y(k) (t), and 
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if there is a linear function x(t) = st + r and two distinct constants L and R such 
that: 

(i) In the case s = 0, for each k, if either path of the pair {X(k) (t), y(k) (t)}, say 
X(k) (t), is of the second type, then X(k) (t) is a constant depending only on k. 

(ii) Both x(k) (t) and y(k) (t) converge to x(t) uniformly on the t-interval [0,1] as 
k -> o0. 

(iii) U kk(t) (t) and ukk (t) (t) converge to L and R, respectively, on the t-interval 
[0,1] as k -* oo. 

For each k, denote by Qk the region XIk(t)-hk/2 < X < XJk(t)-hk/2, 0 < t < 1. 

We call the sequence {? k} the transition region of the ATW, x(t) the limit path of 
the ATW, L and R the two states of the ATW, and JR - L the amplitude of the 
ATW. 

Next we consider entropy properties of an ATW. Following Osher [17], for any 
convex entropy U(w) and its flux F(w), we adopt the numerical entropy flux 

(3.6) Gj 1(t) F (uj) + U'(uj) [gj 1 -f (uzj)]. 
By Lemma 3.7, Gj_ 1 (t) satisfies the following 

Corollary 3.9. If the numerical scheme satisfies the conditions of Lemma 3.7, 
then 

JI GI(t) 1 (t) - F(uI(t) (t)) I dt < Cc, 2 

where xI(t) = I(t)h + c is an c-path of either type. 

In [17], Osher proved the following equality: 

Id \p'j?'(t 
(3.7) h (jU(uj(t)) +D+Gy_1(t)) = U"(w)(gj+1 - f(w)) dw. 

Let qS(x, t) be a smooth function with a compact support in the domain -00 < 
x < oo, 0 < t < 1. Set q5 (t) = (xj,t). Consider 

(3.8) q J E hk (+U(Uk(t)) + D+Gk_ 1 (t)) oj(t)dt 
k (t) 

We have the following fundamental result. 

Lemma 3.10. Suppose that {u (t)} ??_ is a numerical solution generated by a 
scheme (1.2)-(1.4) that satisfies Assumption 3.3. Let {Ik(t)hk + Ck, Jk(t)hk + Ck} 

be an ATW of {uk} with the limit path x(t) = st + r and the two states L and R. 
We have 

(3.9) lim k k = [F(R) - F(L) - s(U(R) -- U(L))] /4(x, t) dt, k oo --st 

where 4jk is defined by (3.8). 

Proof. Without loss of generality, assume that r = 0. Let 

1 J (t) 1 

-= J S hk+dtU j(t))j(t)dt 
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and 
I Jk(t)_l 

D2k = X E> hkD+?G 1 (t)Oj (t)dt 
?j= I k (t) 

It suffices to prove 

(3.10) k - -s(U(R) - U(L)) j (x, t) dt 
x=st 

and 

(3.11) 2k -* (F(R)- F(L)) f (x,t)dt. 
Jx=st 

A summation by parts of 4k leads to 

jk ( kt)- 
_ 

k1 2 Gj_ 1(t)A_ oj(t) |dt 
(3.12) p j=k (t)+1 ) 

+ ; GJ/ kt k (t) Ojk (t)- (t)-G kkt- (t) Ofk (t) (t)) dt 

The first integral in (3.12) tends to 0 since Gk 1 (t) is uniformly bounded, I A4_jI < 

Chk, and limkO (Jk(t) -_ k(t))hk - 0. The second integral tends to 

| (F(R)- F(L))q(x, t) dt 
x=st 

since Corollary 3.9 implies that G kk(t) (t) -- F(R) and G k(t)1 (t) -+ F(L) 

respectively in L' ([O0 1]), and since condition (ii) in Definition 3.8 implies that both 
Ojk(t)-l(t) and Ik(t)(t) tend to O(st, t) uniformly for 0 < t < 1. This completes 
the proof of (3.11). 

We now turn to the proof of (3.10). Without loss of generality, let 
xjk 

(t) = 

Jk(t)hk + Ck be Ek-paths of the first type, and let XI?k(t) = Ik(t)hk + Ck be 8k-paths 
of the second type. 

Consider separately the following three situations, which exhaust all possibilities: 
(i) s > 0. We notice that b(x, t) has compact support spt(q) in {(x, t) E R x R+ 

0 < t < 1}: Define 

jk 

max = max{J k (t) (Xkk, t) E spt () J = (t) (x (t),t) SptI(q)}, 

Ikmin = min{Ik(t) (Xk k t) :E spt(0) 

and 

jmin = min{Jk (t): (Xkk t) E Spt(:)1. 

It follows that for sufficiently large k, and for the xk such that 3 

the line segment {(X., t): 0 < t < 1} crosses each boundary of Qk an odd number 
of times. Suppose that it crosses the right boundary at 

t = tkj tkj --1 .. ' -20k?+1 1 
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and that ui$' U . (ti'j). Suppose also that it crosses the left boundary at tk j 

and that TZk,J df Uj(.ki) An integration by parts leads to 
k 

(t)- j d maxt (Jk (t)-1) 

hkU(u. (t))dt'j(t)dt + E hkU(Tk)c4j(tki) 
j=_Ik (t) j=:mint (_Ik (t) ) 

maxt(Jk (t) -1) 20k+l 

(3.13) - E hk E (_1)i+?U(Uk,j)qj(tk,j) 
j=mint (_Ik (t)) i=l 

The first term on the right tends to zero since (xk k(t) -Xk (t)) k 0 uniformly, and 

U(uj (t)) dt j (t) is uniformly bounded. The second term tends to U(L) fx=st Xdx 
since u kj -) L uniformly. The third term tends to -U(R) fx=st q dx since, by 
condition (iv) of Definition 3.5, the total variation of U(U'j) in i tends to zero 
uniformly in j, and since U(UkO'j) tends to U(R) uniformly in i and j. This proves 
(3.10) in the case s > 0. 

(ii) s < 0. The proof is parallel to that of case (i) and is omitted. 
(iii) s = 0. We assume that the line segment {(xj, t): t' < t < t" } crosses the 

right boundary at 

Proceed similarly to case (i). Since Ik(t) is a constant ( see (i) in Definition 3.8 ), 
it suffices to consider the term 

m t(Jk (t)-_1) ,7T 

(3.14) - S hkZ( 1)?ljU(4i)j(ti)' 
j =mint (I k (t))i= 

where wj for each j is a real constant with lwjI = 1. Since the total variation of 
U(UkO') with respect to i is uniformly bounded, 

(_I)i+,Wj U(Uk'j )oj(tik'j) 
i=1~~~i 

has an upper bound that is independent of k and j. Therefore, the term (3.14) 
tends to zero since in this case hk(maxt(Jk(t) - mint(Ik(t))) tends to zero. This 
proves (3.10) in the case s = 0, and completes our proof of the lemma. W 

Corollary 3.11. With the conditions of Lemma 3.10, we have the following dis- 
crete Rankine-Hugoniot condition: 

(3.15) f(R)-f(L) =s(R-L). 
Moreover, 

R 

(3.16) lim k = U"(w)(f [w; L, R] -f (w))dw j (x, t) dt. 

Proof. First, choose U(w) = w, and F(w) = f (w). We have 

Gk+ 2 (t) = gk, 2 (t). 

This and the definition of the numerical scheme imply that 4k 0. Hence, the 
relation (3.9) becomes the discrete Rankine-Hugoniot condition (3.15). 
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Next, for general U, applying (3.15), we obtain through an integration by parts, 
R 

F(R) - F(L) - s(U(R) - U(L)) J[F'(w) - sU'(w)] dw 

R R 

JR(f'(w) - s)U'(w) dw J U'(w)d(f(w) - f[w; L, R]) 

R 

JR U"(w) (f [w; L, R] - f (w)) dw. 

The combination of this relation and (3.9) yields (3.16). C 

Definition 3.12. An ATW {xk (t), yk (t)} of {uk} is called an asymptotic traveling 
discontinuity (ATD) of {Uk} if the ATW is essentially monotone in space. Namely, 

(i) for each k, and for any integers p and q such that Ik(t) < p < q < Jk(t), and 
for 0 < t < 1, 

-(u k(t) - Uk(t)) sign(R - L) < ?k, 

and 
(ii) for each k and t E [0,1], if j is an integer such that Ik(t) < j < Jk (t) and 

that (UM I(t) - u (t)) (R - L) < 0, then 

uk (t),u IU (t) e A?k ({w: f(w) = f[w; L, R]}), 
where fiA(S) denotes the 6-neighborhood of a set S E R. An ATD of {uk} is called 
an asymptotic traveling expansion shock (ATES) of {uk} if (2.8) with w_ = L and 
w+ = R fails. In the last case we also say that {Uk} harbors the ATES {Xk(t), yk(t)}. 

We are now ready to state our third WEI criterion for convergence. 

Theorem 3.13. A semidiscrete scheme of the form (1.2)-(1.4) satisfying Assump- 
tion 3.3 converges if the scheme is unable to create a sequence of numerical solutions 
{Uk} that harbors an ATES. 

The proof of this theorem is contained in the Supplement to this paper. 
We now turn our attention to convex conservation laws, i.e., the case f"(w) > 0. 
We call a pair of numbers {L, R} a rarefying pair if L < R and f [w; L, R] > f (w) 

when L < w < R. We call a collection of data {vj };+_p a rarefying collection with 
respect to the pair {L,R} if L = vo < v1 < < v, = R, and L < v_1, and 

def 
R > Vn+l. We let 9j+1/2 = g(Vj-p+?1Vjp+2...I Vj+p). I where g is the function 
(1.3) in its self-similar form. We add superscripts to denote a sequence of rarefying 
collections and the corresponding numerical fluxes. 

Our fourth, and last, WEI criterion for convergence is as follows. 

Theorem 3.14. A semidiscrete scheme of the form (1.2)-(1.4) satisfying Assump- 
tion 3.3 converges for convex conservation laws if, for any rarefying pair {L, R}, 
there is a constant 6 > 0 such that the quadrature inequality 

n- 1 R 

(3.17) Z(vj+l - Vj)jj+1/2 + 6 < j f[w; L, R] dw 
j=O 

holds for all rarefying collections {vj}n+Pp with respect to the pair {L, R}. 

Proof. We prove the contrapositive. Hence, we assume the scheme does not con- 
verge. By Theorem 3.13, there exists a sequence of numerical solutions {uk} that 
harbors an ATES {Xk k(t)' xk k(t) }- Since f is convex, the two states L and R of 
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the ATES form a rarefying pair {L, R}. The essentially monotone property of the 
ATES implies that, for each k and each t c [0,1], there are two integers Ik(t) and 
rk (t) with Ik(t) < lk(t) < rk(t) < Jk(t) such that 

(3.18) L + ?k < Ulk(t)?l(t)I 

(3.19) Urk(t)-l(t)< R - ?k, 

(3.20) L-?Ck < u;(t) < L + ?k when Ik(t) < j < lk(t), 

(3.21) R - ?k < u (t) <fR + 6k when rk(t) < j < jk(t), 

and 

(3.22) Uj (t) < Uk? 1(t) when I k(t) < j < r (t)-1. 

Moreover, since XIk(t) and XJk(t) are 6k-paths, 

(3.23) Ukk(t)-l(t) > UZk( ) (t) - 6k if UIk(t)+I(t) > UIk(t)k(t) + 6kI 

and 

(3.24) U%k(t)+?(t) < u k k (t) + 6k if UJk(t)1(t) < UZjk(t)(t)- k. 

For any fixed t C [0, 1] and any positive integer k, construct the data {vj }+P' in 
the following way. Set I - lk(t) + 1 if lk(t) Jk(t) and UIk(t)l (t) ? UIk(t) -k 

Otherwise, set 1' = Ik(t). Set r' = rk(t) -1 if rk(t) = Jk(t) and u%k(t)+1(t) > 

Ujk(t)(t) + 6k* Otherwise, set r' = rk(t). 

Let n = r'-l'. Then set v0 = L, Vn R, and Vj = uj/4+j (t) for 1'+1 < j < r'-1. 
Also set 

(3.25) V1 fL if U_1(t) <LI 
ul/4_I(t) otherwise, 

and 

(3.26) Jn+ = { kR if uk+,+1(t) > R, 

Ur/+1 (t) otherwise, 

Finally, set vj -ulz,+(t) for -p < j < -2 and for n + 2 < j < n + p. In the 
notations {v;}7+ip, and later in - 

we ignore the apparent dependence on k, 
as this will not be harmful to the proof. It is straightforward to verify that the 
data {vj `Pp form a rarefying collection with respect to the rarefying pair {L, R}. 
Moreover, by (3.20), (3.21), (3.23) and (3.24), the construction also implies that 
Iv1-ul/(t) < 2Ek when-p < j < n + p, and, in particular, vj u= / +j (t) when 

j :7--1, 0, n, n + 1. 
With the relation (3.7) applied to (3.8), the limit in Corollary 3.11 becomes 

Ik 1 k1 U (t) 

J-Ik(t) E U" (w)(gj+1 (t) -f (w)) dwqj (t)dt 

R 

(3.27) U" (w) (f[w; L,RI]- f(w)) dw / X ?)t) dt. 
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It is known that for convex problems, the entropy condition for U(w) - w2/2 is 
sufficient for convergence. For this U(w), (3.27) becomes 

Jk(t Jk (gj+ (t) f (w)) dw4j (t) dt 

(3.28) j=k(t) jt) 

R 1 

jR(f [w; L, R] -f (w)) dw j q(x, t) dt. 

Since 4(x, t) is smooth with compact support, since the total spatial variations of 
uk(X, t) have a uniform bound B, and since X'kk(t) -st + lXkk(t, - stj < k, we have 

I Jk(t)_, Ujk (t) jk+1 

(3.29) ] j (gj+ (t) - f(w)) dw(O(st, t) - j (t)) dt < CEk, 

where C is independent of k. 

Clairn. For the data {vj}1+P 

(3.30) 
Jk()1 j+ (t) u n-I v,+ 

1 F -(j+ 1 (t)-f(w)) dw - j ( -j+ - f(w)) dw <? CJk, 
j=_k(t) (t) i=o i 

where gi+ 1 = g(Vj_p+l I Vj-p+2,... , Vj+p) and g is the function in (1.3) in its self- 
similar form. 

In fact, 

Jk (t)-_1 U2k+(t n-1 v+ 

Jk 1 (gj+) (t) -f (w)) dw - I, (9i+i - f (w)) dw 
j=tk (t) f d (t) i=/ tf 

< 
+ 

[: t: (gj+ _ (t) - f (w)) dwd+ - (gj+ 2(t) ) (w)]) dw 

n-1 uk,++ t v+ 

+ tt= Li 
++ 

(gi,+i+ 1(t) - f(w)) dw - 
i 

(pi+-f (w)) dw| 

=A1 +A2+A3. 

If A1 contains only one term, then jukk(t)+l(t) - uk(t)(t)I < 2Sk. Therefore, A1 < 

CEk. If A1 contains more than one term, then in each term of A1, Ijuk+1(t)-u(t)l < 

26k. Hence, by Corollary 3.4 (ii), lgj (t) -f (uj (t)) < CEk holds. Therefore, A1 < 
CEk holds in all cases, where C is again independent of k. Similarly, A2 < CEk. To 
prove A3 < C?k, it suffices to notice that, among the n terms in the summation, 
there are at most 2p nonzero terms, and that the absolute value of each term is 
bounded by CEk. Hence, the claim is true. 
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Let /(x,t) > 0, and f=Sxt(x,t)dt > 0. Combining (3.17), (3.29) and (3.30), 
and using the triangle inequality, we arrive at 

I Jk (t)_l Uk (t) 

lim J E / (gj+ 1 (t) -f (w)) dwc j (t) dt 
k40J __k Jzt) 

( 

< [jR(f[w; L, R] - f(w)) dw-] Is (x, t) dt. 

This contradicts (3.28), and proves the theorem. C 

4. APPLICATIONS 

In this section we apply Theorem 3.14 to two classes of schemes for convex 
problems. The building blocks for both classes are the so-called E-schemes [17]. 
Let gE(., ) be the flux of any E-scheme, i.e., it is Lipschitz continuous, and satisfies 

(4.1) sgn(wj+l -wj)(gE(wj, wj+) -f (w)) < 0 

for all w between wj and Wj+1. We now turn to our first example. 

Example 4.1. Consider the class of generalized MUSCL schemes 

(4.2) uj = - E(uj_1 + sj-lh/2, uj - sjh/2). 

In [18] Osher proposed and analyzed this class with the CEI approach. A nonlinear 
slope limiter was introduced to enforce a cell entropy inequality for uj+l < uj. Let 
uj+ satisfy 

IUj+1 

/f'(w)(w - uj+1) dw = O. 

Osher [18] proved that a generalized MUSCL scheme (4.2) for the convex problem 
(1.1) converges provided that for each j, 

(4.3) 0 < hsj hsj < 1 

(+uj4 0?Lj - 

and that if uj > uj+i, the nonlinear slope limiter 

(4.4) -hsj < 2 max(min((uj - ij+ 1 ), (iii_ -UM)) 0) 

holds. 
With WEI, we are able to prove the convergence without using the nonlinear 

slope limiter (4.4). In fact we can do even better by proving the following result. 

Theorem 4.2. A generalized MUSCL scheme with an E-scheme building block con- 
verges provided that the slope sj satisfies: sj = 0 if uj is an extremum; 

(4.5) 0 < hj h 
< 2 

if uj-l is a maximum or uj+1 is a minimum; and (4.3) holds if uj < uj+j. 

Proof. Tadmor [25] shows that the numerical solution satisfying the conditions of 
the theorem obeys Assumption 3.3. Hence, the WEI criterion is applicable. Let 
{L, R} be a rarefying pair and the data {fv}jJ~+ be a rarefying collection with 
respect to the pair. Then Osher's cell entropy inequality fJiv? ( fj?i/2 (w)) dw < 
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o holds for 0 < j < n - 1 since Vj < vj+l, which implies ZyI0(vj?i-v)gj+1/2 ? 

ff f (w) dw (see [18]). Hence, the inequality (3.17) holds for any positive constant 

f8< f(f [w; L, R] -f (w)) dw, and such a 6 does exist because {L, R} is a rarefying 
pair. This proves the theorem. O 

Example 4.3. In [24] Sweby investigated a large class of high-resolution schemes 
using flux limiters. Here we consider the semidiscrete version of these schemes. 
The building block is again an arbitrary E-scheme (4.1). We borrow the following 
notations from [24]: 

(fj+ 1)+= f (uj+1) _ gE (uj, uj+1), 

(I\ fj+ 1 - f (uj) - gE(uj, uj+1), 

rt = (Afj_ 1)+/(Afj+1 )+, r- -(Afj+1 )-I(,fj- 1)-. 
We also set 

(Dfj+ 1)+ = (A\fj+ 1)+/A+uj. 
The numerical flux of the semidiscrete version of the schemes with flux limiters has 
the following form: 

(4.6) gj+1 = gE(uj,uj+l)+ * (rt)(fj+1)++ j + 

Here the function 4 defines the flux limiter of the scheme. Sweby [24] identified 
the class of functions 9b for the scheme (4.6) to be second-order accurate away from 
nonsonic extrema and TVD. The convergence of these schemes has been an open 
problem owing to the subtler issue of entropy consistency. 

Consider the following Chakravarthy and Osher limiters: 

o 0 r < 0, 
(4.7) Xc r, 0 < r < c, 

c, r > c. 

In the special case c = 1, by adding artificial compression/rarefaction (ACR), and 
using CEI, Osher and Chakravarthy [19] were able to prove the convergence of the 
modified schemes for the convex problem (1.1). In the following, by applying the 
WEI criterion, we first show that without the addition of ACR, the schemes still 
converge. 

Theorem 4.4. The numerical solutions of the schemes (1.2)-(1.4) converge for the 
convex problem (1.1) provided that the numerical flux gj+ 1 satisfies: 

(i) gj+ > f (uj) if uj - uj?l > 0, and gj-2 f (uj) if uj - Uj01 < O. 

(ii) When uj+l > uj, gj+ is defined by (4.6) where gE is the numerical flux 

function of any E-scheme, and +(r) = b1(r) is defined by (4.7). 

Proof. Let uj+l be a spatial maximum; thus r- 1 < 0. Hence, it follows from (4.7) 

that Vb(r- 1) = 0. Therefore 

gj+= =gE(=,u I )+ 2 ? gE(Z\Uj+j) + (Afi+ )+ = f(uj+i). 

Replacing j with j - 1 in the preceding inequality, we see that if uj - uju? > 0, 
then g .? < f(uj). Similarly, if uj - uj?l < 0, then gj+ < f(uj). These two 

inequalities and condition (i) of the theorem verify Assumption 3.3. Next, let {L, R} 
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be an arbitrary rarefying pair. Using Theorem 3.14 to prove the convergence of the 
scheme, we need to show that there exists a 8 > 0 such that for any rarefying 
collection {vj }T+Pj with respect to the pair {L, R}, the inequality (3.17) holds. 

For convenience, define 

(4.8) f[c,d] - j {f[w; c, d] -f(w)} dw, 

and 

def fj+j- 
(4 .9) S+ -/ [+ -f (w)] dw. 

Since f is convex, 

(4.10) f[a, b] + f[b, c] < f[a, c] if a < b < c. 

Applying the facts that V/(r) < 1 and -E(vj,vj+?) < min(f(vj),f(vj+3)) to (4.6), 
we get 

(4.11) S ftI ?f[vj,vj+?l if 0 < j< n-1. 

Summing over (4.11) and using (4.10) and the fact that {vj 17+P is a rarefying 
collection with respect to the pair {L, R}, we obtain that, for 1 < i < n -1, 

n-I n-I 

(4. 12) E3 SS+, < f [vj, vj+] < f [L, vi] + f [vi, R] < f [L, R] 
j=O j=O 

We assume that no 8 > 0 exists with the aforementioned property. Then there 
exists a sequence of rarefying collections { v>, j = -p, -p + 1,... , n' + p}?i01 with 
respect to the pair {L, R} such that 

nU -l n - l 

(4.13) lim E SJi?l lim E f[v ,v<+1] f[L,R]. 
j=O j=O 

Claim. The inequality (4.13) implies that there exists a sequence of integers {jL} 
satisfying 0 < j1 < nv - 1 such that 

(4.14) lim vt'V = L and lim v">?+ - R. 

For, otherwise, there exists a constant p > 0, a subsequence of the rarefying col- 
lections, still denoted by {v',j =-p,-p + 1,... ,nv + p}?=1, and a sequence of 
integers {i>} satisfying 1 < iv < n" - 1 such that L + p < viu < R - p. The 
convexity of f, the definition of rarefying pairs, and (4.12) imply 

n" -I1 

Z [vj, v?l] < f [L, vi"j I + f [v1i, IR] 
j=o 

< 
pdef (4.15) - max(f[L,L+p]+f[L+p,R],f[L,R-p]+f[R-p,R]) 

< f[L,R]. 

This contradicts (4.13) because Hp is independent of v. Hence, the claim is true. 
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On the one hand, combining (4.10), (4.11), (4.13) and (4.14), we obtain 

nl'-l n'-- n>1 

f[L,R] =lim > S>1 =lim + > s 
j=O j=O j=jv +1 

(4.16) < iim(f[L,vX>1]+S>?i +Aj[v`>+I,RI) lim S 1? < f[L,RI. 

This implies 

(4.17) lim S>+ f [L, R]. 

On the other hand, applying (4.14) and the definition of the rarefying collections 
with respect to the rarefying pair {L, R} to (4.6), we get lim, g>F = gE(L, R), 

and hence lim,,,S. S l < 0. This contradicts (4.17) since f[L, R] > 0 by the 

definition of the rarefying pair {L, R}. D 

When the building blocks of the high-resolution schemes are such well-known 
monotone schemes as the Godunov, the Engquist-Osher or Lax-Friedrichs schemes, 
we can do even better. The following give the numerical fluxes of these three 
schemes: 

(i) The Godunov scheme: 

God I ) minu??<W<Uj+j f (w) when u3 < uj+j, 

L xui>w>ui+l f(w) when uj > u3?i. 

(ii) The Engquist-Osher scheme: 
pj fUj+1 

gE (uj uj+1) a max(f'(w), 0) dw + min(f'(w), 0) dw + f(0). 

(iii) The Lax-Friedrichs scheme: 

gLF(UjUj~ji )-f (uj) + 2 (uj+,) a 

where a > max Ijf'(w)j. 
When we use these three monotone schemes as the building blocks, we have the 

following result. 

Theorem 4.5. The numerical solutions of the schemes (1.2)-(1.4) converge for the 
convex problem (1.1) provided that the numerical flux gj+ satisfies: 

(i) gj+9 > f(uj) if uj - uj?i > 0, and g3-1 > f(uj) if uj - uj?i < 0. 
(ii) When uj+1 > uj, gj+' is defined by (4.6) where 4(r) = g)(r) is given by 

(4.7) with 1 < c < 2, provided that gE is the numerical flux of one of the 
aforementioned monotone schemes. 

Proof. Let {L, R} be a rarefying pair. Consider any rarefying collection {v}j'>+P 
with respect to this pair. Following the arguments of the proof of Theorem 4.4, we 
only need to show that although (4.11) may now be false, (4.12) is still true. For 
convenience, we keep the same notations (Afj+f)?, (Dfj+l)? and rt when u is 
replaced by v. 
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Using ,b(r') = 4O(r-) = 0, we have 

(4.18) 
n-I 

(Si+! - f[vjIVj+?1) 
j=O 

= {(Afi) + [1 -bc(r)]1(Af1)-]} A+vo- 

n-2 
- i E { [1 - jc(r+)] (Afj +) + [1 - VcY(rj7)] (Afj+ 

> 
A+vj 

j=1 

--{[1 - ic(rn-j)]1(Afn-?) + (Afn-)} +?V1 

< --[((Df )+ + (Df -)(?v)2 - (Df3 )-(A+vo)(A+vl)] 2 2 2 2 

n-2 
- 1 Z{[(Dfj+ 1?)+(A+vj)2 - (Dfj_ )+(A+vj)(,A+vj-i) 

,=1 

+ (Dfj+1 )- (A+vj)2 - (Dfj+3 )- (A+vj) (A+vj+l)] 

- [((Dfn_1 )+ + (Dfn_)-)(,A+vni)2 - (Dfn3 )+(A+vn-1)(A?vVn-2)1 

< -2 { [(Df1 )+ + (Dfi )-](A+ V) 2 (Df3 )-[(,A+V0)2 + (A+?v)2]} 
12m 2 1 

n-2I 

Z {(Dfj+1-)+(A+Vj)2 _(Dfj_1)+[(A+Vj)2 + (A+vj_1)2] 
j=l 

+ (Dfj+ )-iA+vj) -2 (Dfj+3)-[(A?+Vj)2 + (A?Vj?1)2]} 

-2~ {[(Dfn1 )+ + (Dfn (A+Vn 

-(Df3 )+ (A+Vn-1)2 + (A+Vn-2)2 } 
12 2 

-4(D fn_ _)+ (A+Vn-1 )2 - 
1 

(Df i (A\+vo) 2 

+ Z E [A+ (Dfj+ 1 )-](,A+vj)2 _ -(Dfn- )-i(A+vn_1)2. 
j=0 

Here we have used the condition fc(r) < r, the fact that (Dfj+1 )+ > 0, and the 

elementary inequality ab < (a2 + b2)/2. 
First if the building block is the Lax-Friedrichs scheme, we nave (Dfj+ 1 )i = 

(a + D+f (vj))/2. Hence, 

A+?(Dfj- 1 )+ = l\ (D+f(vj)) > 0 for 1 < j < n-1, and 

+(Dfj+21)- = -A+(D+f(vj)) < 0 for 0 < j ? n -2 
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since f is convex. Applying these two inequalities to (4.18) and noticing that 
(Df+ i )? > 0 for 0 < j < n - 1, we get the desired inequality (4.12). 

Next suppose the building block is the Godunov scheme or the Engquist-Osher 
scheme. Then we have 

(4.19) gGod(vj vj+1) = gEO(vj, vj+) = min f(w) 
vj <wvj+l 

when vj+l > vj, as is the case for 0 < j < n - 1. Hence, for 0 < j < n -1, 

(4.20) (Afj+i )=+ 0 and (Afj+ i)- = -A+f(vj) when f'(vj+?) < 0; 

(4.21) (Afi+) =0 and (Afj+ + = A+f(vj) when f'(vj) > 0; 

and 

(4.22) (Af+21)- = f(vj) - 
f(Wmin) and (Afj+i)+ = f(vj+l) - f(Wmin) 

when f'(vj) < 0 > f'(vj+?). 
There is a slight difference in the arguments according to the different locations 

of the sonic point. We just consider the case in which there is an integer p, 1 < p < 
n- 2, such that f'(vp) < 0 < f'(vp+i), for the proof in this case contains all the 
essential arguments for other cases. Applying (4.20), (4.21) and (4.22) to (4.18), 
we have 

n-I 

(Si+2 - f[vj v?j+]) 
j=O 

- -(Df )-(A +vo)2 
- [(Dfj+ -) -(Dfj+3 ) ](A+Vj) 4 2 

- [(Dfp+i)+ + (Dfp+1)-(A?vp)2 

1n-I 
(4.23) - [(Dfj+)+ -(Dfj_i)+](A+vj)2 - (Dfn- )+(A+Vn-I)2. 

j=P+1 

To verify (4.12), it suffices to show that every term in (4.23) is less than or equal to 
zero. In fact when j <p-1, (Dfj+1)- = -D+f(vj); when j > p+1, (Dfj+i)+ = 

D+f (vj). The convexity of f then implies that (Dfj+ 1) > (Dfj+3 )- holds when 
0 < j < p-2, and (Df+ i1)+ > (Dfj.1 )+ holds when p+ 2 < j < n -1. It remains 
to show that 

(4.24) (Dfp 1)- > (Dfp+i)- and (Dfp+i)+ < (Dfp+3)+ 

Actually, the convexity of f implies that 

(4.25) (Dfp) = f (vp)-f (vmin) < f (vp) -f (vmin) < (Dfp_-. 
2D~1 A?vP Vmin -VP2 

This is the first inequality in (4.24). The second can be proved similarly. We have 
thus proved the convergence when the building block is either the Godunov scheme 
or the Engquist-Osher scheme. O 
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